Bachelor of Science (BS) in Electrical Engineering

Bachelor of Science in Electrical Engineering

Offered By: College of Science, Engineering, & Technology

Earn Your Bachelor of Science in Electrical Engineering Degree

Electrical engineering is a dynamic and continually evolving field. Prepare to be an innovator on the forefront of emerging technologies with a Bachelor of Science in Electrical Engineering degree from Grand Canyon University. Developed with industry guidance, this undergraduate degree gives students broad foundational knowledge in specializations such as electrical design, electronics engineering and signal processing.

The BS in Electrical Engineering is offered by the College of Science, Engineering and Technology. It is a multidisciplinary program, combining key facets of mathematics, chemistry and physics. The courses blend instructional knowledge with real-world applications and practical project management. Students will acquire expertise in circuits, electromagnetic fields, and signals and systems. They demonstrate their mastery of the field through hands-on capstone projects.

The Bachelor of Science in Electrical Engineering program is accredited by Engineering Accreditation Commission of ABET.

What Are the Branches of Electrical Engineering?

This intensive Bachelor of Science degree program prepares students to succeed across all branches of electrical engineering, including power, electronic, signal processing and telecommunications engineering. Students will polish their problem-solving and critical thinking skills in the hands-on labs, integrated seamlessly with classroom lectures.

Students will work in collaborative groups to develop key project management skills they will need for the 21st century job market. The curriculum encourages students to develop the professionalism, innovative spirit, interpersonal skills and communication skills necessary to succeed. As a private Christian university, GCU asks students to reflect upon their coursework in light of the Christian worldview.

Study Advanced Science and Engineering Courses in the Electrical Engineering Degree

The electrical engineering bachelor’s degree program guides students through a rigorous curriculum. Students will develop a solid framework of knowledge in chemistry, physics and mathematics before diving into degree-specific courses. In classes such as Circuits, Science of Solid Materials, Electromagnetic Fields & Optics and Electrical Design Principles, students will develop the following core competencies:

  • Understand AC and DC circuits, circuit analysis, filters, impedance and power transfer
  • Explore the concepts of bonding and the structure of solids, as well as the thermal, acoustic, electronic and optic properties of materials
  • Examine best practices in engineering project management, including the principles, tools and techniques across major methodologies
  • Consider the fundamentals of static electric and magnetic fields, and explore the properties of light in terms of electromagnetic waves
  • Design electrical and electronic devices, circuits, and systems by applying the engineering sciences, economics and national and international standards, using hands-on activities

In addition, students will complete a capstone project over the course of two semesters, during which they explore real-world applied research and design projects in their area of interest.

Explore Careers in Electrical Engineering

According to the U.S. Bureau of Labor Statistics, the job outlook for electrical engineers is expected to grow by seven percent from 2016 through 2026. Graduates may pursue opportunities across a diverse range of settings, such as the following:

  • Governmental agencies
  • Private engineering firms
  • Power generation
  • Telecommunications utility agencies
  • Semiconductor industry
  • Research facilities

A qualified electrical engineer may pursue a number of different roles within these organizations. Electrical can focus on research and developmental design, test engineering and project management. Specialty areas may include digital and analog devices, radar and navigation systems, nuclear power or solar energy.

The Bachelor of Science in Electrical Engineering degree program at GCU effectively prepares students to pursue a graduate degree in the field, which can further enhance career opportunities.

For more information on the ABET accreditation of engineering programs and other university licensures, please visit our University Accreditation and Regulations page. 

Get More Information!

Loading Form

TOTAL CREDITS & COURSE LENGTH:
Total Credits: 128
Campus: 15 weeks [More Info]

TRANSFER CREDITS:
Up to 90 credits, only 84 can be lower division
TUITION RATE:
Campus: $8,250 per semester [More Info]

Course List

General Education Requirements:
34-40 credits
Major:
88 credits
Open Elective Credits:
0-6 credits
Total Degree Requirements:
128 credits

General Education Requirements

General Education coursework prepares Grand Canyon University graduates to think critically, communicate clearly, live responsibly in a diverse world, and thoughtfully integrate their faith and ethical convictions into all dimensions of life. These competencies, essential to an effective and satisfying life, are outlined in the General Education Learner Outcomes. General Education courses embody the breadth of human understanding and creativity contained in the liberal arts and sciences tradition. Students take an array of foundational knowledge courses that promote expanded knowledge, insight, and the outcomes identified in the University's General Education Competencies. The knowledge and skills students acquire through these courses serve as a foundation for successful careers and lifelong journeys of growing understanding and wisdom.

Requirements

Upon completion of the Grand Canyon University's University Foundation experience, students will be able to demonstrate competency in the areas of academic skills and self-leadership. They will be able to articulate the range of resources available to assist them, explore career options related to their area of study, and have knowledge of Grand Canyon's community. Students will be able to demonstrate foundational academic success skills, explore GCU resources (CLA, Library, Career Center, ADA office, etc), articulate strategies of self-leadership and management and recognize opportunities to engage in the GCU community.

Course Options

  • UNV-112, Success in Science, Engineering and Technology & Lab: 4
  • UNV-103, University Success: 4
  • UNV-303, University Success: 4
  • UNV-108, University Success in the College of Education: 4

Requirements

Graduates of Grand Canyon University will be able to construct rhetorically effective communications appropriate to diverse audiences, purposes, and occasions (English composition, communication, critical reading, foreign language, sign language, etc.). Students are required to take 3 credits of English grammar or composition.

Course Options

  • UNV-104, 21st Century Skills: Communication and Information Literacy: 4
  • ENG-105, English Composition I: 4
  • ENG-106, English Composition II: 4

Requirements

Graduates of Grand Canyon University will be able to express aspects of Christian heritage and worldview. Students are required to take CWV-101/CWV-301.

Course Options

  • CWV-101, Christian Worldview: 4
  • CWV-301, Christian Worldview: 4

Requirements

Graduates of Grand Canyon University will be able to use various analytic and problem-solving skills to examine, evaluate, and/or challenge ideas and arguments (mathematics, biology, chemistry, physics, geology, astronomy, physical geography, ecology, economics, theology, logic, philosophy, technology, statistics, accounting, etc.). Students are required to take 3 credits of intermediate algebra or higher.

Course Options

  • MAT-154, Applications of College Algebra: 4
  • MAT-144, College Mathematics: 4
  • PHI-105, 21st Century Skills: Critical Thinking and Problem Solving: 4
  • BIO-220, Environmental Science: 4

Requirements

Graduates of Grand Canyon University will be able to demonstrate awareness and appreciation of and empathy for differences in arts and culture, values, experiences, historical perspectives, and other aspects of life (psychology, sociology, government, Christian studies, Bible, geography, anthropology, economics, political science, child and family studies, law, ethics, cross-cultural studies, history, art, music, dance, theater, applied arts, literature, health, etc.). If the predefined course is a part of the major, students need to take an additional course.

Course Options

  • HIS-144, U.S. History Themes: 4
  • PSY-102, General Psychology: 4
  • SOC-100, Everyday Sociology: 4

Required General Education Courses

Course Description

This is the first course of a two-semester introduction to chemistry intended for undergraduates pursuing careers in the health professions and others desiring a firm foundation in chemistry. The course assumes no prior knowledge of chemistry and begins with basic concepts. Topics include an introduction to the scientific method, dimensional analysis, atomic structure, nomenclature, stoichiometry and chemical reactions, the gas laws, thermodynamics, chemical bonding, and properties of solutions. Co-Requisite: CHM-113L.

Course Description

The laboratory section of CHM-113 reinforces and expands learning of principles introduced in the lecture course. Experiments include determination of density, classification of chemical reactions, the gas laws, determination of enthalpy change using calorimetry, and determination of empirical formula. Co-Requisite: CHM-113.

Course Description

This course provides a rigorous treatment of the concepts and methods of elementary calculus and its application to real-world problems. Topics include differentiation, optimization, and integration.  Software is utilized to facilitate problem analysis and graphing.  Prerequisite: MAT-261.

Course Description

This course introduces the fundamentals of the engineering design methodology and the product development process.. Students will learn the importance of listening to the voice of the customer and how to incorporate those desires into a product using design for X principles. Students will develop verification and validation tests and learn how those become formalized qualification or acceptance processes. Prerequisites: ESG-162 and ESG-162L or MAT-154.

Course Description

This course introduces students to engineering documentation, tolerances, and standards. Typical fabrication tools common in a machine shop and the impact those tools have on design details will be covered. The students will work on several multi-disciplined projects through the semester. Prerequisites: ESG-162 and ESG-162L. Co-Requisites: ESG-210 and ESG-251.

Course Description

This course is a calculus-based study of basic concepts of physics, including motion; forces; energy; the properties of solids, liquids, and gases; and heat and thermodynamics. The mathematics used includes algebra, trigonometry, and vector analysis. A primary course goal is to build a functional knowledge that allows students to more fully understand the physical world and to apply that understanding to other areas of the natural and mathematical sciences. Conceptual, visual, graphical, and mathematical models of physical phenomena are stressed. Students build critical thinking skills by engaging in individual and group problem-solving sessions. Prerequisite: ESG-162, ESG-162L or MAT-261. Co-Requisite: MAT-262, PHY-121L.

Course Description

This calculus-based course utilizes lab experimentation to practice concepts of physical principles introduced in the PHY-121 lecture course. Students are able to perform the proper analysis and calculations to arrive at the correct quantifiable result when confronted with equations involving gravity, sound, energy, and motion. Prerequisite: ESG-162, ESG-162L or MAT-261. Co-Requisite: MAT-262, PHY-121.

Course Description

This course will cover the basics of managing an engineering project, including: project planning, initiating of project, implementation of the project plan, and completion of the project. Students will be taught how to pitch their idea for funding, both in written form and in oral form, as well as prepare a formal written funding proposal. The class will cover the basics of Engineering Economics and introduction to how this topic is covered on the Fundamentals of Engineering (FE) exam. Throughout the semester, the students will use the management and economic concepts learned to develop a portfolio and proposal for a capstone project to be completed in the following year. This is a writing intensive course. Prerequisites: ESG-210 and ESG-220.

Course Description

This course presents basic principles, technical details, and recent advances in power and sustainable energy systems. The course focuses on the generation of electrical power using a variety of energy sources such as fossil, nuclear, and renewables. The course introduces students to power plant thermal cycle analysis. Prerequisites: PHY-122, PHY-122L, MAT-364, and EEE-202 and EEE-202L. Co-Requisite: ESG-441L.

Course Description

The laboratory section of ESG-441 reinforces and expands learning of principles introduced in the lecture course. Hands-on activities include research projects aimed at suggesting solutions to problems in the areas of electrical power generation using a variety of energy sources such as fossil, nuclear and renewables. Prerequisites: PHY-122, and PHY-122L, MAT-364, and EEE-202 and EEE-202L. Co-Requisite: ESG-441.

Core Courses

Course Description

This course is founded in the application of mathematics to engineering problems and processes. The course begins with foundations in algebraic manipulation, progresses into trigonometric models, complex numbers, signal processing, introduction to matrices and system equations, differentiation and integration, and differential equations all applied to the solution to engineering problems. Prerequisite: MAT-154. Co-Requisite: ESG-162L.

Course Description

The engineering math labs are the hands on applications of the foundational mathematics concepts applied to engineering problems in the engineering math course. The labs will apply algebra, trigonometry, matrices, differential and integral calculus, and differential equations to various engineering problems. Prerequisite: MAT-154. Co-Requisite: ESG-162.

Course Description

This is the second course of a two-semester introduction to chemistry intended for undergraduates pursuing careers in the health professions and others desiring a firm foundation in chemistry. Upon successful completion of this course, students demonstrate knowledge and/or skill in solving problems involving the principles of chemical kinetics, chemical equilibrium, and thermodynamics; understanding chemical reactions using kinetics, equilibrium, and thermodynamics; comparing and contrasting the principal theories of acids and bases; solving equilibrium involving acids, bases, and buffers; describing solubility equilibrium; describing terms associated with electrochemistry and solving problems associated with electrochemistry; and describing fundamentals and applications of nuclear chemistry and organic chemistry. Prerequisites: CHM-113 and MAT-154 or higher. Co-Requisite: CHM-115L.

Course Description

The laboratory section of CHM-115 reinforces and expands learning of principles introduced in the lecture course. Experiments include determination of rate law, examples of Le Châtelier’s principle, the use of pH indicators, buffer preparation, experimental determination of thermodynamic quantities, the use of electrochemical cells, and qualitative and quantitative analysis. Prerequisites: CHM-113L and MAT-154 or higher. Co-Requisite: CHM-115.

Course Description

This course introduces students to the basics of computer programming. Students will learn to develop algorithms to solve engineering problems, and the implementation of those algorithms in the C language. This course will include using C program for embedded devices for interacting with the world around them. Topics include assembly language, C programming language, and real time programming. MATLAB will be taught in the course to introduce students to rapid development tools and allow for flexibility in prototyping. Concepts of Object Oriented (OO) programming will be included in the MATLAB section of this course. Hands-on activities focus on writing code that implements concepts discussed in lecture and on gaining initial exposure to common microcontrollers. Prerequisites: ESG-162 and ESG-162L or MAT-261.

Course Description

This course introduces students to the basics of computer-aided design. Students will learn to produce great designs using computer-aided design software. Topics include 2-D and 3-D design and modeling, mechanical tolerances, and electrical and mechanical design integration. Hands-on activities focus on the design and integration of different subsystems, electrical and mechanical. Prerequisites: ESG-162 and ESG-162L.

Course Description

This course provides a rigorous treatment of the concepts and methods of integral, multivariable, and vector calculus and its application to real-world problems. Prerequisite: MAT-262.

Course Description

This course focus is on the analysis of two- and three-dimensional forces on a system in an equilibrium (static) state. Further, it discusses real world applications for static analyses via simple trusses, frames, machines, and beams. Additional topics covered include properties of areas, second moments, internal forces in beams, laws of friction, and static simulation in Solidworks. Prerequisite: PHY-121, PHY-121L, ESG-251.

Course Description

This course provides students with a strong foundation in core areas of electrical engineering. Students will learn the main ideas of circuits and their enabling role in electrical engineering components, devices, and systems. The course offers in-depth coverage of AC & DC circuits, circuit analysis, filters, impedance, power transfer, applications of Laplace transforms, and op-amps. Prerequisites: MAT-262, PHY-121 and PHY-121L. Co-Requisite: PHY-122, PHY-122L, EEE-202L.

Course Description

The laboratory section of EEE-202 reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus problem solving using scientific computation tools, simulations, and various programming languages. Prerequisites: MAT-262, PHY-121 and PHY-121L. Co-Requisite: PHY-122, PHY-122L, EEE-202.

Course Description

This course focuses on solutions and qualitative study of linear systems of ordinary differential equations, and on the analysis of classical partial differential equations. Topics include first- and second-order equations; series solutions; Laplace transform solutions; higher order equations; Fourier series; second-order partial differential equations. Boundary value problems, electrostatics, and quantum mechanics provide the main context in this course. Prerequisite: MAT-253 or MAT-264.

Course Description

This calculus-based course is the second in a 1-year introductory physics sequence. In this course, the basics of three areas in physics are covered, including electricity and magnetism, optics, and modern physics. The sequence of topics includes an introduction to electric and magnetic fields. This is followed by the nature of light as an electromagnetic wave and topics associated with geometric optics. The final topic discussed in the course is quantum mechanics. Prerequisites: MAT-264, PHY-121, and PHY-121L. Co-Requisite: PHY-122L.

Course Description

This course utilizes lab experimentation to practice concepts of physical principles introduced in the PHY-122 lecture course. Some of the topics students understand and analyze involve the relationship between electric charges and insulators/conductors, magnetism in physics, energy transformations in electric circuits, the relationship between magnetism and electricity, and how they relate to the medical industry. Prerequisites: MAT-264, PHY-121, and PHY-121L. Co-Requisite: PHY-122.

Course Description

This project-based course will cover the design and implementation of a microcontroller embedded system. Students will learn embedded system architecture, assembly language programming, interfacing to peripherals, interrupt handling, and debugging/troubleshooting techniques and tools. Prerequisite: ESG-111.

Course Description

This class will introduce statistical process control and teach proper engineering experimental design and analysis techniques. Concepts introduced will include process variability, statistical controls, factorial, blocking and confounding as applied to engineering problems. Prerequisite: MAT-262.

Course Description

Apply the stochastic process to the modeling and solution of the engineering problems. The course introduces the students to modeling, quantification, and analysis of uncertainty in engineering problems; all building into an introduction to Markov chains, random walks, and Galton-Watson tree and their applications in engineering. Prerequisite: MAT-364.

Course Description

This course is intended primarily for mathematics, science, and engineering students. The goal of the course is to impart the concepts and techniques of modern linear algebra (over the real scalar field) with a significant level of rigor. Students write clearly about the concepts of linear algebra (definitions, counterexamples, simple proofs), and apply theory to examples. The course emphasizes the practical nature of solutions to linear algebra problems. Students implement some of these solutions, where appropriate, as computer programs. Prerequisite: MAT-264 or MAT-253

Course Description

This course provides a general background on the field of materials science. The course builds upon prior study of general chemistry and develops the concepts of bonding and the structure of solids. Building on prior study of physics, the course introduces topics in solid state physics and devices. Additional topics may include electronic properties of materials as well as their thermal, mechanical, acoustic, and optical properties. Prerequisites: PHY-122, PHY-122L, CHM-115, and CHM-115L. Co-Requisite: STG-242L.

Course Description

The laboratory section of STG-242 reinforces and expands learning of principles introduced in the lecture course. Hands-on activities include applying numerical solutions for properties and characteristics of given materials using data on their properties, and characterization of materials properties for given engineering applications. Prerequisites: PHY-122, PHY-122L, CHM-115, and CHM-115L. Co-Requisite: STG-242.

Course Description

This course bridges theoretical mathematical foundations and practical implementation of circuits and computer algorithms. The course presents applications in engineering, physics, feedback and control, communications, and signal processing. Topics covered include: CT and DT signals and systems, linearity, time-invariant systems, causality, transient and steady state responses, Fourier transforms, Laplace transforms, Z transforms, sampling, state variables, and feedback systems. Prerequisites: MAT-364, EEE-202 and EEE-202L. Co-Requisite: MAT-345, EEE-213L.

Course Description

The laboratory section of EEE-213 reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus problem solving using scientific computation tools, and various programming languages. In particular, students work on system simulation and real-time signal processing. Prerequisites: MAT-364, EEE-202 and EEE-202L. Co-Requisite: MAT-345, EEE-213.

Course Description

This course focuses on the analysis and design of filters, circuits, converter modeling, and signal transfer functions. Additional topics covered include non-ideal active devices, and an introduction to digital circuits. The laboratory reinforces and expands learning of principles introduced in the lecture course. Hands-on activities engage students in projects such as the design, analysis, simulation, and construction of a switched-mode power supply; solve complex design problems, or the use of modern analog circuits. Prerequisites: MAT-364, EEE-202 and EEE-202L.

Course Description

This course develops the fundamentals of static electric and magnetic fields, physical optics, and describes the properties of light in terms of electromagnetic waves. Prerequisites: MAT-364, PHY-122 and PHY-122L. Co-Requisite: STG-350L.

Course Description

The laboratory section of STG-350 reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus on the use of analytical techniques to solve problems and interpret results physically, Smith Chart and its applications to transmission lines, and general solutions of Faraday's Law and Maxwell's equations. Prerequisites: MAT-364, PHY-122 and PHY-122L. Co-Requisite: STG-350.

Course Description

This class will cover the design and application of digital logic circuits, including combination and sequential logic. Students will analyze, design, verify, and test logic circuits as applied to solve engineering problems. The class will cover a range of mathematical objects, algorithms, number theory, and counting. Prerequisites: MAT-262 and EEE-212.

Course Description

This course develops the foundations of electrical communications and differences between analog and digital modulation. Main topics covered include: analog signal transmission and reception, effects of noise in analog communications, sampling, digital information sources, entropy, source coding, waveform coding, and PCM Digital transmission through AWGN through band-limited channels. The laboratory reinforces and expands learning of principles introduced in the lecture course. Hands-on activities include channel coding, wireless and mobile networks, and signal processing using Matlab. Prerequisites: EEE-213 and EEE-213L, EEE-302, ESG-374, ESG-384 or MAT-374.

Course Description

This course introduces students to the principles of electrical engineering design. It provides a solid foundation in electrical engineering design. Students will learn to produce great electrical engineering designs taking into consideration requirements, standards and regulatory compliance. Design of electrical and electronic devices, circuits, and systems by the application of the engineering sciences, economics, and national and international standards. Hands-on activities focus on the design and integration of different subsystems. Topics include electrical engineering modeling, simulations, and integration. Prerequisite: EEE-302, ESG-395. Co-Requisite: ESG-451.

Course Description

The first capstone course provides students the opportunity to work in teams to tackle real world applied research and design projects in their chosen area of interest. Students develop a project proposal, conduct a feasibility study, learn to protect intellectual property, develop teamwork skills, budgets, and a schedule for completing the project. Students conduct extensive research, integrate information from multiple sources, and work with a mentor through multiple cycles of feedback and revisions. Students use this course to further develop technical writing and business presentation skills. This is a writing intensive course. Prerequisite: ESG-395.

Course Description

This course introduces current trends in computer architecture with a focus on performance measurement, instruction sets, computer arithmetic, design and control of a data path, pipelining, memory hierarchies, input and output, and a brief introduction to multiprocessors. The laboratory reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus on writing assembly language code that implements concepts discussed in the lecture course, focusing on registers, processes, threads, and I/O management.

Course Description

This course builds on knowledge acquired in previous courses on advanced circuits to expand the coverage of the design and analysis of integrated circuit amplifiers and the design and analysis of feedback amplifiers. Specific topics covered in this course may include: electronics and manufacturing of integrated circuits, microwave/RF amplifiers, linear amplifiers, mixers, and advanced digital and analog circuits. The laboratory reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus on the design, assembly, and testing electronic circuits that use diodes, transistors, and operational amplifiers. This is a writing intensive course. Prerequisites: EEE-302, STG-242, and STG-242L.

Course Description

The second capstone course provides students the opportunity to implement and present the applied research project designed, planned, and started in the first capstone course. The capstone project is a culmination of the learning experiences in an engineering program. Students conduct extensive research, integrate information from multiple sources, and work with a mentor through multiple cycles of feedback and revision. Prerequisite: ESG-451.

Course Description

This course presents the fundamentals of analog and digital control systems. Analysis and design of linear control systems using physical system models. Analysis and control of nonlinear systems are introduced. Hands-on activities focus on the design, assembly and testing of electronic control systems. Prerequisites: EEE-213 and EEE-213L.

Course Description

This project-based course will consolidate the student’s knowledge of the electrical engineering design process from concept/idea to manufacturing. It provides sufficient depth of the design process to enable students to contribute in the solution of real-world engineering problems. Prerequisite: EEE-471. Co-Requisite: ESG-452.

Locations

GCU Campus Student


Join Grand Canyon University’s vibrant and growing campus community, with daytime classes designed for traditional students. Immerse yourself in a full undergraduate experience, complete with curriculum designed within the context of our Christian worldview.

* Please note that this list may contain programs and courses not presently offered, as availability may vary depending on class size, enrollment and other contributing factors. If you are interested in a program or course listed herein please first contact your University Counselor for the most current information regarding availability.

* Please refer to the Academic Catalog for more information. Programs or courses subject to change.

Scroll back to top