Program Details

Bachelor of Science in Computer Science with an Emphasis in Game and Simulation Development

Offered By: College of Science, Engineering, & Technology

Simulation and Gaming CS Degree

Earn Your CS Bachelor of Science Degree with an Emphasis in Game and Simulation Development

Simulation and gaming development are driving forces for business innovation. According to Statista, the total value of the video gaming industry in the U.S. for 2017 was $18.4 billion. You can become part of this dynamic trend by earning your Bachelor of Science in Computer Science with an Emphasis in Game and Simulation Development at Grand Canyon University. The skills you will learn during your studies are immediately applicable to multiple industry sectors, including entertainment, education and corporate training.

Offered by the College of Science, Engineering and Technology, this CS degree blends instructional coursework with hands-on, real-world applications.

As a computer science degree, the development of a game is only a marginal scope. The program focuses primarily on the science, algorithms, concepts and theory behind computer games and simulation of scientific phenomena and not on building a complete game or simulation.

It is an intensive survey that introduces students to graphic visualization, artificial intelligence, machine learning and human-computer interaction, and virtual reality. Students learn to conduct themselves as ethical professionals while deepening their understanding of 2D and 3D graphics, operating systems, information security and object-oriented programming.

Gain In-Depth Computer Science Skills in Game Development

GCU is a welcoming Christian campus that encourages students to become innovators who make valuable contributions to their chosen career fields. As you work toward earning your CS degree, you will improve your critical thinking, communication and leadership skills. You will gain practical project experience that effectively prepares you to succeed in today’s competitive workforce. Examine the curriculum through the lens of the Christian perspective as you consider various ethical issues and questions of morality.

The BS in Computer Science with an Emphasis in Game and Simulation Development degree follows a rigorous curriculum that includes courses such as Digital Logic and Design, Game Design and Game Play, Operating Systems, Compiler Design, Information Security and Computer Graphics Lecture and Lab. Students will study a broad scope of topic areas, including the following:

  • The creation of game storyboards, the design of game levels with increasing complexity and the representations of real-life phenomena and processes
  • Professional conduct and communication, and professional ethics issues such as workplace etiquette, cyber-ethics, identity theft and ownership rights
  • Artificial intelligence algorithms within a gaming context, including topics like path finding, learning and behavior selection
  • An introduction to the process, production and publishing of games for mobile operating systems
  • Mathematical modeling and simulation of scientific phenomena and business processes

The program also includes with a deep dive in natural sciences like Physics, Biology, Chemistry, with a solid foundation in Mathematics: Calculus, Linear Algebra, Discrete Math, and Statistics, at the College of Science, Engineering and Technology.

In addition, this simulation and gaming development degree requires students to complete two capstone courses. Students will work in teams to pursue real-world research and design projects, including virtual and augmented reality. The capstone experience enables students to demonstrate their accomplishments as members of the GCU learning community.

Become an Innovator in Simulation and Gaming Development with a BS in Computer Science - Game and Simulation Development

There is considerable career potential in the digital technologies field, and a Bachelor of Science in Computer Science with an Emphasis in Game and Simulation Development degree may be applicable to a wide range of specific job titles. As a software developer you might work on a collaborative team that includes game designers and multimedia artists.

Put your 21st century skills and knowledge to work in a variety of settings. Software developers with a specialization in simulation and gaming development may pursue employment at video game production companies, private corporations and educational institutions.

According to the U.S. Bureau of Labor Statistics, the job outlook for software developers from 2016 through 2026 is expected to grow by 24 percent. This rate of growth is considered to be much faster than average.

Get More Information!

Loading

TOTAL PROGRAM CREDITS & COURSE LENGTH:
Total Program Credits: 128
Campus: 15 weeks
TRANSFER CREDITS:
Up to 90 credits, only 84 can be lower division
PROGRAM TUITION RATE:
Campus: $8,250 per semester [More Info]

Course List

The programs offered at Grand Canyon University may vary by content and course length. You are currently viewing the program version available in Arizona. For information about specific course content, credit length and VA approval in your state, please contact a counselor at 1-855-GCU-LOPE or click here to request more information.
General Education Requirements:
34-40 credits
Major:
88 credits
Open Elective Credits:
0-6 credits
Total Degree Requirements:
128 credits

General Education Requirements

General Education coursework prepares Grand Canyon University graduates to think critically, communicate clearly, live responsibly in a diverse world, and thoughtfully integrate their faith and ethical convictions into all dimensions of life. These competencies, essential to an effective and satisfying life, are outlined in the General Education Learner Outcomes. General Education courses embody the breadth of human understanding and creativity contained in the liberal arts and sciences tradition. Students take an array of foundational knowledge courses that promote expanded knowledge, insight, and the outcomes identified in the University's General Education Competencies. The knowledge and skills students acquire through these courses serve as a foundation for successful careers and lifelong journeys of growing understanding and wisdom.

Requirements

Upon completion of the Grand Canyon University's University Foundation experience, students will be able to demonstrate competency in the areas of academic skills and self-leadership. They will be able to articulate the range of resources available to assist them, explore career options related to their area of study, and have knowledge of Grand Canyon's community. Students will be able to demonstrate foundational academic success skills, explore GCU resources (CLA, Library, Career Center, ADA office, etc), articulate strategies of self-leadership and management and recognize opportunities to engage in the GCU community.

Course Options

  • UNV-112, Success in Science, Engineering and Technology & Lab: 4
  • UNV-103, University Success: 4
  • UNV-303, University Success: 4
  • UNV-108, University Success in the College of Education: 4

Requirements

Graduates of Grand Canyon University will be able to construct rhetorically effective communications appropriate to diverse audiences, purposes, and occasions (English composition, communication, critical reading, foreign language, sign language, etc.). Students are required to take 3 credits of English grammar or composition.

Course Options

  • UNV-104, 21st Century Skills: Communication and Information Literacy: 4
  • ENG-105, English Composition I: 4
  • ENG-106, English Composition II: 4

Requirements

Graduates of Grand Canyon University will be able to express aspects of Christian heritage and worldview. Students are required to take CWV-101/CWV-301.

Course Options

  • CWV-101, Christian Worldview: 4
  • CWV-301, Christian Worldview: 4

Requirements

Graduates of Grand Canyon University will be able to use various analytic and problem-solving skills to examine, evaluate, and/or challenge ideas and arguments (mathematics, biology, chemistry, physics, geology, astronomy, physical geography, ecology, economics, theology, logic, philosophy, technology, statistics, accounting, etc.). Students are required to take 3 credits of intermediate algebra or higher.

Course Options

  • MAT-154, Applications of College Algebra: 4
  • MAT-144, College Mathematics: 4
  • PHI-105, 21st Century Skills: Critical Thinking and Problem Solving: 4
  • BIO-220, Environmental Science: 4

Requirements

Graduates of Grand Canyon University will be able to demonstrate awareness and appreciation of and empathy for differences in arts and culture, values, experiences, historical perspectives, and other aspects of life (psychology, sociology, government, Christian studies, Bible, geography, anthropology, economics, political science, child and family studies, law, ethics, crosscultural studies, history, art, music, dance, theater, applied arts, literature, health, etc.). If the predefined course is a part of the major, students need to take an additional course.

Course Options

  • HIS-144, U.S. History Themes: 4
  • PSY-102, General Psychology: 4
  • SOC-100, Everyday Sociology: 4

Required General Education Courses

Course Description

This course presents the fundamentals of algebra and trigonometry with an applied emphasis; it provides the background and introduction for the study of calculus. Topics include review of linear equations and inequalities in one and multiple variables; functions and their graphs; polynomial, rational, exponential, logarithmic, and trigonometric functions; vectors and complex numbers. Slope and rate of change are introduced to set up the concepts of limits and derivatives. There is an emphasis on both an understanding of the mathematical concepts involved as well as their application to the principles and real-world problems encountered in science and engineering. Software is utilized to facilitate problem analysis and graphing. Prerequisite: MAT-134 or MAT-154.

Course Description

This course provides a rigorous treatment of the concepts and methods of elementary calculus and its application to real-world problems. Topics include differentiation, optimization, and integration.  Software is utilized to facilitate problem analysis and graphing.  Prerequisite: MAT-261.

Course Description

This course is a study of biological concepts emphasizing the interplay of structure and function, particularly at the molecular and cellular levels of organization. Cell components and their duties are investigated, as well as the locations of cellular functions within the cell. The importance of the membrane is studied, particularly its roles in controlling movement of ions and molecules and in energy production. The effect of genetic information on the cell is followed through the pathway from DNA to RNA to protein. Co-requisite: BIO-181L.

Course Description

This lab course is designed to reinforce principles learned in BIO-181 through experiments and activities which complement and enhance understanding of macromolecules, cell membrane properties, cellular components, and their contribution to cell structure and function. Assignments are designed to relate cellular processes such as metabolism, cell division, and the flow of genetic information to cell structure. Co-requisite: BIO-181.

Course Description

This course reviews the basic principles, tools, and techniques used in computer applications that enable communication, visualization, access to information, learning and entertainment. Students learn the methods of designing, implementing and evaluating techniques for effective communication in a technical, business, education or entertainment context. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on experiencing and implementing concepts discussed in the lecture. Students create applications that communicate ideas efficiently and are easy to use. This is a writing intensive course. Prerequisite: CST-201, MAT-262.

Course Description

This course provides an insight into professional communications and conduct associated with careers in science, engineering and technology. Students learn about the changing modes of communication in these disciplines recognizing the advances in digital communications. They gain practical experience in developing and supporting a thesis or position in written, oral and visual presentations. Students will explore concepts and issues in professional ethics and conduct such as privacy, discrimination, workplace etiquette, cyber-ethics, network and data security, identity theft, ownership rights and intellectual property. This is a writing intensive course.

Program Core Courses

Course Description

This course introduces the fundamental concepts and syntax of the Java programming language. The course focuses on object-oriented techniques in Java with an emphasis on problem solving and fundamental algorithms.

Course Description

This course provides an in-depth coverage of object-oriented programming using most current application programming methods, languages, and tools. Students will design, create, run, and debug applications. The course emphasizes the development of correct, well-documented programs using object-oriented programming concepts. Prerequisite: CST-110 or CST-111 or CST-105.

Course Description

This course is a calculus-based study of basic concepts of physics, including motion; forces; energy; the properties of solids, liquids, and gases; and heat and thermodynamics. The mathematics used includes algebra, trigonometry, and vector analysis. A primary course goal is to build a functional knowledge that allows students to more fully understand the physical world and to apply that understanding to other areas of the natural and mathematical sciences. Conceptual, visual, graphical, and mathematical models of physical phenomena are stressed. Students build critical thinking skills by engaging in individual and group problem-solving sessions. Prerequisite: MAT-262. Co-Requisite: PHY-121L.

Course Description

This calculus-based course utilizes lab experimentation to practice concepts of physical principles introduced in the PHY-121 lecture course. Students are able to perform the proper analysis and calculations to arrive at the correct quantifiable result when confronted with equations involving gravity, sound, energy, and motion. Prerequisite: MAT-262. Co-Requisite: PHY-121.

Course Description

This course provides a rigorous treatment of the concepts and methods of integral, multivariable, and vector calculus and its application to real-world problems. Prerequisite: MAT-262.

Course Description

This in an introductory course in discrete mathematics with digital logic. Topics covered include Boolean algebra, circuits, number theory, sequences, recursion, sets, functions, and counting. An emphasis will be placed on writing computer programs that address key concepts discussed in lecture. Prerequisite: CST-110 or CST-111 or CST-105.

Course Description

This course covers classical algorithms and data structures, with an emphasis on implementation and application in solving real-world computational problems. The course focuses on algorithms for sorting, searching, string processing, and graphs. Students learn basic strategies to evaluate divide-and-conquer, recursive backtracking, and algorithm efficiency. Hands-on activities focus on writing code that implements concepts and algorithm implementation techniques. Prerequisite: CST-210 or CST-135.

Course Description

This course provides students with the technical skills required to design and implement a database solution using a SQL server. Students use data definition language (DDL) to create and delete database objects, and data manipulation language (DML) to access and manipulate those objects. Students gain hands-on experience with database design, data normalization, SQL sub-queries, creating and using views, understanding and working with data dictionaries, and loading and unloading databases. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on writing code that implements concepts discussed in the lecture course, specifically creating databases and SQL queries. Prerequisite: CST-110 or CST-111 or CST-105.

Course Description

This course is intended primarily for mathematics, science, and engineering students. The goal of the course is to impart the concepts and techniques of modern linear algebra (over the real scalar field) with a significant level of rigor. Students write clearly about the concepts of linear algebra (definitions, counterexamples, simple proofs), and apply theory to examples. The course emphasizes the practical nature of solutions to linear algebra problems. Students implement some of these solutions, where appropriate, as computer programs. Prerequisite: MAT-264 or MAT-253

Course Description

This course introduces current trends in computer architecture with a focus on performance measurement, instruction sets, computer arithmetic, design and control of a data path, pipelining, memory hierarchies, input and output, and a brief introduction to multiprocessors. The laboratory reinforces and expands learning of principles introduced in the lecture course. Hands-on activities focus on writing assembly language code that implements concepts discussed in the lecture course, focusing on registers, processes, threads, and I/O management. Prerequisites: MAT-252 or MAT-262, and CST-110 or CST-111 or CST-105.

Course Description

This course covers the role of statistics in engineering, probability, discrete random variables and probability distributions, continuous random variables and probability distributions, joint probability distributions, random sampling and data description, point estimation of parameters, statistical intervals for a single sample, and tests of hypotheses for a single sample. Prerequisite: MAT-253 or MAT-264.

Course Description

This writing-intensive course teaches students to develop innovative solutions to real-world problems, developing and testing hypotheses as they learn to create a new product or service.

Course Description

This course covers applications of differential equations in modeling and simulation. Students use mathematical models for continuous and discrete simulation, and develop applications for complex systems across a variety of domains. Students learn how to represent a system by a model and then execute the model to generate and statistically analyze data. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on writing code that implements differential equation based modeling algorithms and visual simulations. Prerequisites: CST-210 and MAT-374.

Course Description

This course explains the concepts, structure, and mechanisms of modern operating systems. The course covers computational resources, such as memory, processors, networks, security, and how the programming languages, architectures, and operating systems interact. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on writing a shell that implements process management, file management, and I/O management. Prerequisites: CST-210 and MAT-262.

Course Description

This course introduces the syntax and semantics of programming languages, program construction and software design. Lab activities will focus on analyzing the characteristics of context-free languages and solving a variety of languages construction challenges. Practicum/field experience hours: None. Principles of Programming Languages Lecture and Lab. Prerequisite: Prerequisite: CST-201, CST-215, MAT-262.

Course Description

The course introduces basic concepts of AI in the gaming context such as finite state machines, fuzzy logic, architectures, planning, and search. Students will work with implementations of common game AI algorithms for behaviors such as path finding, behavior selection, and learning. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on implementing algorithms for flocking, A* path finding, decision trees, and deterministic finite state machines. Prerequisites: MAT-345, and MAT-374.

Course Description

The first capstone course provides students the opportunity to work in teams to tackle real world applied research and design projects in their chosen area of interest. Students develop a project proposal, conduct a feasibility study, learn to protect intellectual property, develop teamwork skills, budgets, and a schedule for completing the project. Students conduct extensive research, integrate information from multiple sources, and work with a mentor through multiple cycles of feedback and revisions. Students use this course to further develop technical writing and business presentation skills. This is a writing intensive course. Prerequisites: CST-307, CST-315 and department approval.

Course Description

This course builds upon knowledge already acquired in the areas of system architecture and operating systems and focuses on the core issues of information security. Students learn fundamental aspects, security mechanisms, operational issues, security policies, and attack types. Prerequisite: ITT-121 or CST-210 or CST-221.

Course Description

This course covers 2D and 3D concepts, algorithms, and implementation methods using shader-based programming. Main topics covered include coordinate systems, transformations, material simulation, and animation. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on writing vertex shaders and fragment shaders to implement light equations for coloring effects, textures, materials, and animation. Prerequisites: CST-210, MAT-262, and MAT-345.

Course Description

This course reviews the concepts and tools used in the development of compilers. Students synthesize topics covered in previous courses: formal languages, data structures, and computer architecture. The course reinforces the principles of software engineering and development through a complete cycle of building a working compiler. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on writing a compiler including a lexer, parser, semantic analyzer, code generator, and optimizer. Prerequisites: CST-301 and MAT-374.

Course Description

This course covers conceptual models for game design. Students analyze various computer games and develop and understanding of game concepts like history, genres, storylines, gameplay elements and challenges, and the design process. Students survey several modern tools and technologies used to create games. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on creating game storyboards, designing game levels with increasing complexity, and representations of real life phenomena and processes. Prerequisites: CST-305, CST-320, and MAT-374.

Course Description

The second capstone course provides students the opportunity to implement and present the applied research project designed, planned, and started in the first capstone course. The capstone project is a culmination of the learning experiences while a student in the Computer Science program. Students conduct extensive research, integrate information from multiple sources, and work with a mentor through multiple cycles of feedback and revision. This is a writing intensive course. Prerequisite: Successful completion of STG-451 with a grade of C or better.

Course Description

This course is a direct continuation of ITT-305. It expands the coverage of information security topics to include security domains, forensics, information states, security services, threat analysis, and vulnerabilities. Prerequisite: ITT-305.

Course Description

This course surveys current advances in computer science. Topics covered may include parallel computing, blockchain, distributed systems, cloud computing, embedded systems, cryptography, computational science, and new technologies. Lab activities will focus on hands-on projects with a variety of technologies, devices, and programming languages. Practicum/field experience hours: None. Current Trends in Computer Science Lecture and Lab. Prerequisite: CST-307, CST-315, CST-301.

Course Description

This course explores iterative, rapid application development techniques, and cross platform development environments, to produce and publish a game for a mobile operating systems. Topics covered include performance profiling and optimization, hardware acceleration, designing for small screens, and interaction via mobile device specific inputs. The laboratory reinforces and expands learning of principles introduced in the lecture. Hands-on activities focus on creating a complete application for a mobile device and publish it on an online store. The application will utilize the key APIs provided on the device, including location awareness, motion detection, networking, and tactile user interface. Prerequisite: CST-305, CST-310, CST-320, MAT-374.

Program Locations


GCU Campus Student


Join Grand Canyon University’s vibrant and growing campus community, with daytime classes designed for traditional students. Immerse yourself in a full undergraduate experience, complete with curriculum designed within the context of our Christian worldview.

* Please note that this list may contain programs that are not presently offered as program availability may vary depending on class size, enrollment and other contributing factors. If you are interested in a program listed herein please first contact your University Counselor for the most current information regarding availability of the program.

Program Domains

On-campus program disclosures (4 years) Additional Disclosures

* Please refer to the Academic Catalog for more information. Program subject to change.

Scroll back to top